Deep fake detection using a sparse auto encoder with a graph capsule dual graph CNN
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019237" target="_blank" >RIV/62690094:18470/22:50019237 - isvavai.cz</a>
Result on the web
<a href="https://peerj.com/articles/cs-953/#" target="_blank" >https://peerj.com/articles/cs-953/#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.953" target="_blank" >10.7717/peerj-cs.953</a>
Alternative languages
Result language
angličtina
Original language name
Deep fake detection using a sparse auto encoder with a graph capsule dual graph CNN
Original language description
Deepfake (DF) is a kind of forged image or video that is developed to spread misinformation and facilitate vulnerabilities to privacy hacking and truth masking with advanced technologies, including deep learning and artificial intelligence with trained algorithms. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. With the recent advancement of generative adversarial networks (GANs) in deep learning models, DF has become an essential part of social media. To detect forged video and images, numerous methods have been developed, and those methods are focused on a particular domain and obsolete in the case of new attacks/threats. Hence, a novel method needs to be developed to tackle new attacks. The method introduced in this article can detect various types of spoofs of images and videos that are computationally generated using deep learning models, such as variants of long short-term memory and convolutional neural networks. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The proposed DF detection model is tested using the FFHQ database, 100K-Faces, Celeb-DF (V2) and WildDeepfake. The evaluated results show the effectiveness of the proposed method.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
2376-5992
Volume of the periodical
8
Issue of the periodical within the volume
May
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
"Article Number: e953"
UT code for WoS article
000811320500002
EID of the result in the Scopus database
2-s2.0-85131916851