Evaluation of deepfake detection using YOLO with local binary pattern histogram
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019500" target="_blank" >RIV/62690094:18470/22:50019500 - isvavai.cz</a>
Result on the web
<a href="https://peerj.com/articles/cs-1086/" target="_blank" >https://peerj.com/articles/cs-1086/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.1086" target="_blank" >10.7717/peerj-cs.1086</a>
Alternative languages
Result language
angličtina
Original language name
Evaluation of deepfake detection using YOLO with local binary pattern histogram
Original language description
Recently, deepfake technology has become a popularly used technique for swapping faces in images or videos that create forged data to mislead society. Detecting the originality of the video is a critical process due to the negative pattern of the image. In the detection of forged images or videos, various image processing techniques were implemented. Existing methods are ineffective in detecting new threats or false images. This article has proposed You Only Look Once-Local Binary Pattern Histogram (YOLO-LBPH) to detect fake videos. YOLO is used to detect the face in an image or a frame of a video. The spatial features are extracted from the face image using a EfficientNet-B5 method. Spatial feature extractions are fed as input in the Local Binary Pattern Histogram to extract temporal features. The proposed YOLO-LBPH is implemented using the large scale deepfake forensics (DF) dataset known as CelebDF-FaceForensics++(c23), which is a combination of FaceForensics++(c23) and Celeb-DF. As a result, the precision score is 86.88% in the CelebDF-FaceForensics++(c23) dataset, 88.9% in the DFFD dataset, 91.35% in the CASIA-WebFace data. Similarly, the recall is 92.45% in the Celeb-DF-Face Forensics ++(c23) dataset, 93.76% in the DFFD dataset, and 94.35% in the CASIA-Web Face dataset.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
2376-5992
Volume of the periodical
8
Issue of the periodical within the volume
September
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
"Article Number: 1086"
UT code for WoS article
000862290800001
EID of the result in the Scopus database
2-s2.0-85139289045