Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17-36 Amide and Glucose-Dependent Insulinotropic Polypeptide
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50021399" target="_blank" >RIV/62690094:18470/22:50021399 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2072-6651/14/6/389" target="_blank" >https://www.mdpi.com/2072-6651/14/6/389</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/toxins14060389" target="_blank" >10.3390/toxins14060389</a>
Alternative languages
Result language
angličtina
Original language name
Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17-36 Amide and Glucose-Dependent Insulinotropic Polypeptide
Original language description
The T-2 toxin, a major secondary metabolite of Fusarium Gramineae, is considered a great risk to humans and animals due to its toxicity, such as inducing emesis. The mechanism of emesis is a complex signal involving an imbalance of hormones and neurotransmitters, as well as activity of visceral afferent neurons. The T-2 toxin has been proven to induce emesis and possess the capacity to elevate expressions of intestinal hormones glucagon-like peptide-(1)(7)(-36) (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), both of which are important emetic factors. In addition, the activation of calcium-sensitive receptor (CaSR) and transient receptor potential (TRP) channels are engaged in intestinal hormone release. However, it is unknown whether hormones GLP-1 and GIP mediate T-2 toxin-induced emetic response through activating CaSR and TRP channels. To further assess the mechanism of T-2 toxin-induced emesis, we studied the hypothesis that T-2 toxin-caused emetic response and intestinal hormones GLP-1 and GIP released in mink are associated with activating calcium transduction. Following oral gavage and intraperitoneal injection T-2 toxin, emetic responses were observed in a dose-dependent manner, which notably corresponded to the secretion of GLP-1 and GIP, and were suppressed by pretreatment with respective antagonist Exending(9-39) and Pro3GIP. Additional research found that NPS-2143 (NPS) and ruthenium red (RR), respective antagonists of CaSR and TRP channels, dramatically inhibited both T-2 toxin-induced emesis response and the expression of plasma GLP-1 and GIP. According to these data, we observed that T-2 toxin-induced emetic response corresponds to secretion of GLP-1 and GIP via calcium transduction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30108 - Toxicology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Toxins
ISSN
2072-6651
e-ISSN
2072-6651
Volume of the periodical
14
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
"Article Number: 389"
UT code for WoS article
000817518000001
EID of the result in the Scopus database
2-s2.0-85131731240