Direct Chiral Supercritical Fluid Chromatography-Mass Spectrometry Analysis of Monoacylglycerol and Diacylglycerol Isomers for the Study of Lipase-Catalyzed Hydrolysis of Triacylglycerols
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020367" target="_blank" >RIV/62690094:18470/23:50020367 - isvavai.cz</a>
Result on the web
<a href="https://pubs.acs.org/doi/10.1021/acs.analchem.3c00053?ref=PDF" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.analchem.3c00053?ref=PDF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.analchem.3c00053" target="_blank" >10.1021/acs.analchem.3c00053</a>
Alternative languages
Result language
angličtina
Original language name
Direct Chiral Supercritical Fluid Chromatography-Mass Spectrometry Analysis of Monoacylglycerol and Diacylglycerol Isomers for the Study of Lipase-Catalyzed Hydrolysis of Triacylglycerols
Original language description
The fast and selective separation method of intact monoacylglycerol (MG) and diacylglycerol (DG) isomers using chiral supercritical fluid chromatography-mass spectrometry (SFC-MS) was developed and employed to study lipase selectivity in the hydrolysis of triacylglycerols (TGs). The synthesis of 28 enantiomerically pure MG and DG isomers was performed in the first stage using the most commonly occurring fatty acids in biological samples such as palmitic, stearic, oleic, linoleic, linolenic, arachidonic, and docosahexaenoic acids. To develop the SFC separation method, different chromatographic conditions such as column chemistry, mobile phase composition and gradient, flow rate, backpressure, and temperature were carefully assessed. Our SFC-MS method used a chiral column based on a tris(3,5-dimethylphenylcarbamate) derivative of amylose and neat methanol as a mobile phase modifier, which provides baseline separation of all the tested enantiomers in 5 min. This method was used to evaluate hydrolysis selectivity of lipases from porcine pancreas (PPL) and Pseudomonas fluorescens (PFL) using nine TGs differing in acyl chain length (14-22 carbon atoms) and number of double bonds (0-6) and three DG regioisomer/enantiomers as hydrolysis intermediate products. PFL exhibited preference of the fatty acyl hydrolysis from the sn-1 position of TG more pronounced for the substrates with long polyunsaturated acyls, while PPL did not show considerable stereoselectivity to TGs. Conversely, PPL preferred hydrolysis from the sn-1 position of prochiral sn-1,3-DG regioisomer, whereas PFL exhibited no preference. Both lipases showed selectivity for the hydrolysis of outer positions of DG enantiomers. The results show complex reaction kinetics of lipase-catalyzed hydrolysis given by different stereoselectivities for substrates.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
<a href="/en/project/GA20-12289S" target="_blank" >GA20-12289S: The coupling of supercritical fluid chromatography with mass spectrometry as a new tool for characterization of lipids and polar metabolites</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analytical chemistry
ISSN
0003-2700
e-ISSN
1520-6882
Volume of the periodical
95
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
5109-5116
UT code for WoS article
000948697100001
EID of the result in the Scopus database
2-s2.0-85149779221