On polynomial representation by U-numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021297" target="_blank" >RIV/62690094:18470/24:50021297 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s13398-023-01548-x" target="_blank" >https://link.springer.com/article/10.1007/s13398-023-01548-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13398-023-01548-x" target="_blank" >10.1007/s13398-023-01548-x</a>
Alternative languages
Result language
angličtina
Original language name
On polynomial representation by U-numbers
Original language description
Let n be a positive integer and let P(x, y) ∈ Z[x, y] be a non-constant polynomial. In this paper, we prove that every S- and T-number (under some technical conditions) can be written in the form P(σ, τ) for uncountable many pairs (σ, τ) of Un -numbers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
ISSN
1578-7303
e-ISSN
1579-1505
Volume of the periodical
118
Issue of the periodical within the volume
2
Country of publishing house
IT - ITALY
Number of pages
10
Pages from-to
"Article number: 52"
UT code for WoS article
001151679400002
EID of the result in the Scopus database
2-s2.0-85183319752