All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On coarse embeddings into c0(Gamma)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488703" target="_blank" >RIV/67985840:_____/18:00488703 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/18:00322034

  • Result on the web

    <a href="http://dx.doi.org/10.1093/qmath/hax035" target="_blank" >http://dx.doi.org/10.1093/qmath/hax035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/qmath/hax035" target="_blank" >10.1093/qmath/hax035</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On coarse embeddings into c0(Gamma)

  • Original language description

    Let λ be a large enough cardinal number (assuming the Generalized Continuum Hypothesis it suffices to let λ =w ‰). If X is a Banach space with dens(X)≥λ, which admits a coarse (or uniform) embedding into any c0(σ), then X fails to have non-trivial cotype, i.e. X contains ℓ nC-uniformly for every C>1. In the special case when X has a symmetric basis, we may even conclude that it is linearly isomorphic with c0(densX).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Quarterly Journal of Mathematics

  • ISSN

    0033-5606

  • e-ISSN

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    211-222

  • UT code for WoS article

    000427014800008

  • EID of the result in the Scopus database

    2-s2.0-85043356002