On coarse embeddings into c0(Gamma)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488703" target="_blank" >RIV/67985840:_____/18:00488703 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00322034
Result on the web
<a href="http://dx.doi.org/10.1093/qmath/hax035" target="_blank" >http://dx.doi.org/10.1093/qmath/hax035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/qmath/hax035" target="_blank" >10.1093/qmath/hax035</a>
Alternative languages
Result language
angličtina
Original language name
On coarse embeddings into c0(Gamma)
Original language description
Let λ be a large enough cardinal number (assuming the Generalized Continuum Hypothesis it suffices to let λ =w ‰). If X is a Banach space with dens(X)≥λ, which admits a coarse (or uniform) embedding into any c0(σ), then X fails to have non-trivial cotype, i.e. X contains ℓ nC-uniformly for every C>1. In the special case when X has a symmetric basis, we may even conclude that it is linearly isomorphic with c0(densX).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quarterly Journal of Mathematics
ISSN
0033-5606
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
211-222
UT code for WoS article
000427014800008
EID of the result in the Scopus database
2-s2.0-85043356002