Surjective homomorphisms from algebras of operators on long sequence spaces are automatically injective
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00549717" target="_blank" >RIV/67985840:_____/21:00549717 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/qmath/haaa066" target="_blank" >https://doi.org/10.1093/qmath/haaa066</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/qmath/haaa066" target="_blank" >10.1093/qmath/haaa066</a>
Alternative languages
Result language
angličtina
Original language name
Surjective homomorphisms from algebras of operators on long sequence spaces are automatically injective
Original language description
We study automatic injectivity of surjective algebra homomorphisms from B(X), the algebra of (bounded, linear) operators on X, to B(Y), where X is one of the following long sequence spaces: c0(λ), ℓc∞(λ), and ℓp(λ) (1⩽p<∞) and Y is arbitrary. En route to the proof that these spaces do indeed enjoy such a property, we classify two-sided ideals of the algebra of operators of any of the aforementioned Banach spaces that are closed with respect to the ‘sequential strong operator topology’.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-07129Y" target="_blank" >GJ19-07129Y: Linear-analysis techniques in operator algebras and vice versa</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quarterly Journal of Mathematics
ISSN
0033-5606
e-ISSN
1464-3847
Volume of the periodical
72
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
1167-1189
UT code for WoS article
000733393600002
EID of the result in the Scopus database
2-s2.0-85121788422