When are full represenations of algebras of operators on Banach spaces automatically faithful?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00523863" target="_blank" >RIV/67985840:_____/20:00523863 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4064/sm181116-30-5" target="_blank" >http://dx.doi.org/10.4064/sm181116-30-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/sm181116-30-5" target="_blank" >10.4064/sm181116-30-5</a>
Alternative languages
Result language
angličtina
Original language name
When are full represenations of algebras of operators on Banach spaces automatically faithful?
Original language description
We examine when surjective algebra homomorphisms between algebras of operators on Banach spaces are automatically injective. In the first part of the paper we show that for certain Banach spaces X the following property holds: For every non-zero Banach space Y every surjective algebra homomorphism ψ:B(X)→B(Y) is automatically injective. In the second part we consider the question in the opposite direction: Building on the work of Kania, Koszmider, and Laustsen [Trans. London Math. Soc., 2014] we show that for every separable, reflexive Banach space X there is a Banach space YX and a surjective but not injective algebra homomorphism ψ:B(YX)→B(X).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-07129Y" target="_blank" >GJ19-07129Y: Linear-analysis techniques in operator algebras and vice versa</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia mathematica
ISSN
0039-3223
e-ISSN
—
Volume of the periodical
253
Issue of the periodical within the volume
3
Country of publishing house
PL - POLAND
Number of pages
24
Pages from-to
259-282
UT code for WoS article
000558102900002
EID of the result in the Scopus database
2-s2.0-85092796566