All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On complemented copies of the space c(0) in spaces C-p(X x Y)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00563648" target="_blank" >RIV/67985840:_____/22:00563648 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11856-022-2334-2" target="_blank" >https://doi.org/10.1007/s11856-022-2334-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-022-2334-2" target="_blank" >10.1007/s11856-022-2334-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On complemented copies of the space c(0) in spaces C-p(X x Y)

  • Original language description

    Cembranos and Freniche proved that for every two infinite compact Hausdorff spaces X and Y the Banach space C(X × Y) of continuous real-valued functions on X × Y endowed with the supremum norm contains a complemented copy of the Banach space c0. We extend this theorem to the class of Cp-spaces, that is, we prove that for all infinite Tychonoff spaces X and Y the space Cp (X × Y) of continuous functions on X × Y endowed with the pointwise topology contains either a complemented copy of ℝω or a complemented copy of the space (c0)p = {(xn)n∈ω ∈ ℝω: xn → 0}, both endowed with the product topology. We show that the latter case holds always when X × Y is pseudocompact. On the other hand, assuming the Continuum Hypothesis (or even a weaker set-theoretic assumption), we provide an example of a pseudocompact space X such that Cp(X × X) does not contain a complemented copy of (c0)p. As a corollary to the first result, we show that for all infinite Tychonoff spaces X and Y the space Cp(X × Y) is linearly homeomorphic to the space Cp(X × Y) × ℝ, although, as proved earlier by Marciszewski, there exists an infinite compact space X such that Cp(X) cannot be mapped onto Cp(X) × ℝ by a continuous linear surjection. This provides a positive answer to a problem of Arkhangel’ski for spaces of the form Cp(X × Y). Another corollary-analogous to the classical Rosenthal-Lacey theorem for Banach spaces C(X) with X compact and Hausdorff—asserts that for every infinite Tychonoff spaces X and Y the space Ck(X × Y) of continuous functions on X × Y endowed with the compact-open topology admits a quotient map onto a space isomorphic to one of the following three spaces: ℝω, (c0)p or c0.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

    1565-8511

  • Volume of the periodical

    250

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    39

  • Pages from-to

    139-177

  • UT code for WoS article

    000839567400005

  • EID of the result in the Scopus database

    2-s2.0-85135791255