Analysis of Statistical Distribution Changes of Input Features in Network Traffic Classification Domain
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133690" target="_blank" >RIV/63839172:_____/24:10133690 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/24:00375887
Result on the web
<a href="https://ieeexplore.ieee.org/document/10575630" target="_blank" >https://ieeexplore.ieee.org/document/10575630</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575630" target="_blank" >10.1109/NOMS59830.2024.10575630</a>
Alternative languages
Result language
angličtina
Original language name
Analysis of Statistical Distribution Changes of Input Features in Network Traffic Classification Domain
Original language description
This study investigates the evolving landscape of network traffic monitoring, which is crucial for maintaining computer network services and security. Traditional methods like Deep Packet Inspection (DPI) face challenges due to increased privacy protection through encryption, prompting a shift towards statistical-based detection using Machine Learning (ML). On the other hand, ML struggles with long-term evaluation due to various distribution changes. This study focuses on the CESNET-TLS-Year22 dataset, derived from one year of TLS network traffic on the CESNET2 backbone. Described research explores the behavior of modern protocols in real-world scenarios and their impact on dataset quality. The main result of our analysis is the identification of the Weekend phenomenon in network traffic classification that is generally overlooked during ML model training.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NOMS 2024-2024 IEEE Network Operations and Management Symposium
ISBN
979-8-3503-2793-9
ISSN
2374-9709
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
IEEE
Place of publication
New York
Event location
Seoul, South Korea
Event date
May 6, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001270140300155