All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Differentiation of Sialyl Linkages Using a Combination of Alkyl Esterification and Phenylhydrazine Derivatization: Application for N-Glycan Profiling in the Sera of Patients with Lung Cancer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F22%3A00076074" target="_blank" >RIV/65269705:_____/22:00076074 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14740/22:00125948

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.analchem.2c00105" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.analchem.2c00105</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.analchem.2c00105" target="_blank" >10.1021/acs.analchem.2c00105</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Differentiation of Sialyl Linkages Using a Combination of Alkyl Esterification and Phenylhydrazine Derivatization: Application for N-Glycan Profiling in the Sera of Patients with Lung Cancer

  • Original language description

    Alterations in oligosaccharides and types of sialic acid (SA) attachments have been associated with different pathological states. Matrix-assisted laser desorption mass spectrometry (MS) is commonly used for glycosylation studies. However, native sialylated glycans are suppressed or not detected during MS experiments. Consequently, different approaches have been employed to neutralize the negative charge of the carboxyl group. In this study, we present the advantage of phenylhydrazine (PHN) labeling for the detection and efficient discrimination of SA linkages when this derivatization follows alkyl esterification. As expected, PHN-labeled sialylated oligosaccharides with the 2,6-linkage type can be easily recognized according to the additional shift in mass corresponding to the presence of a methyl or ethyl group. Surprisingly, oligosaccharides with the 2,3-linked SA residue instead of a lactone were detected carrying the second PHN unit. This was beneficial as no further processing after esterification was needed to stabilize the lactone form. Moreover, during tandem mass experiments, all modified glycans produced favorable fragmentation patterns with a coherent recognition of SA linkages. Although both types of esterification, herein called the EST-PHN approach, provided comparable results, methylation exhibited marginally higher linkage specificity than ethyl esterification. The simplicity and effectiveness of the methodology are demonstrated on the model compound, sialyllactose, and its applicability for biological studies is presented on N-glycan profiling in the sera of lung cancer patients.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30200 - Clinical medicine

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical Chemistry

  • ISSN

    0003-2700

  • e-ISSN

    1520-6882

  • Volume of the periodical

    94

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    6736-6744

  • UT code for WoS article

    000798539200014

  • EID of the result in the Scopus database