Convex cores of measures on R d.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F01%3A16010073" target="_blank" >RIV/67985556:_____/01:16010073 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Convex cores of measures on R d.
Original language description
We define the convex core of a finite Borel measure Q on R d as the intersection of all convex Borel sets C with Q(C)=Q(R d). It consists exactly of means of probability measures dominated by Q. Geometric and measure-theoretic properties of convex coresare studied, including behaviour under certain operations on measures. Convex cores are characterized as those convex sets that have at most countable number of faces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1075801" target="_blank" >IAA1075801: Entropy functions and polymatroids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Scientiarum Mathematicarum Hungarica
ISSN
0081-6906
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
14
Pages from-to
177-190
UT code for WoS article
—
EID of the result in the Scopus database
—