All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rank-one LMI approach to robust stability of polynomial matrices.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F02%3A16030001" target="_blank" >RIV/67985556:_____/02:16030001 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rank-one LMI approach to robust stability of polynomial matrices.

  • Original language description

    Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in mu-analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ME%20496" target="_blank" >ME 496: Polynomial methods for industrial control design</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Kybernetika

  • ISSN

    0023-5954

  • e-ISSN

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    14

  • Pages from-to

    643-656

  • UT code for WoS article

  • EID of the result in the Scopus database