Rank-one LMI approach to robust stability of polynomial matrices.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F02%3A16030001" target="_blank" >RIV/67985556:_____/02:16030001 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Rank-one LMI approach to robust stability of polynomial matrices.
Original language description
Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in mu-analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ME%20496" target="_blank" >ME 496: Polynomial methods for industrial control design</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
643-656
UT code for WoS article
—
EID of the result in the Scopus database
—