A central limit theorem for conditionally centred random fields with an application to testing statistical hypotheses.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F02%3A16030055" target="_blank" >RIV/67985556:_____/02:16030055 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A central limit theorem for conditionally centred random fields with an application to testing statistical hypotheses.
Original language description
We prove a central limit theorem for conditionally centered random field, under condition of strict positivity of the empirical variance per observation. We use a random normalization, which fits to non-stationary situations. The theorem directly appliedto Markov random fields, including the case of phase transition and lack of stationarity. A consequence is the asymptotic normality of a statistics for testing a composite hypotheses on a parameter of Markov fields in complete generality.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2F0269" target="_blank" >GA201/99/0269: Integral geometry and statistics of random set components</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Limit Theorems in Probability and Statistics.
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
209-223
Publisher name
János Bolyai Mathematical Society
Place of publication
Budapest
Event location
Balatonlelle [HU]
Event date
Jun 28, 1999
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—