Building Road-Sign Classifiers Using a Trainable Similarity Measure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F06%3A00041079" target="_blank" >RIV/67985556:_____/06:00041079 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31160/06:00025099
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Building Road-Sign Classifiers Using a Trainable Similarity Measure
Original language description
A frequently used strategy for road sign classification is based on the normalized cross-correlation similarity to class prototypes followed by the nearest neighbor classifier. Because of the global nature of the cross-correlation similarity, this methodsuffers from presence of uninformative pixels (caused e.g. by occlusions), and is computationally demanding. In this paper, a novel concept of a trainable similarity measure is introduced which alleviates these shortcomings. The similarity is based on individual matches in a set of local image regions. The set of regions, relevant for a particular similarity assessment, is refined by the training process. It is illustrated on a set of experiments with road sign classification problems that the trainable similarity yields high-performance data representations and classifiers. Apart from a multi-class classification accuracy, also non-sign rejection capability, and computational demands in execution are discussed. It appears that the tra
Czech name
Klasifikace dopravních značek založená na míře podobnosti zkoumaného objektu k třídě reprezentované typickou značkou
Czech description
Návrh klasifikátoru dopravních značek založeného na podobnosti zkoumaného objektu ke třídě značek reprezentované vždy typickou značkou (prototype-based rule). Navržen algoritmus založený na trénování podle množiny prototypů (trainable similarity). Experimenty na několika datových souborech ilustrují vyšší účinnost klasifikátoru v porovnání s klasifikátory až dosud používanými pro klasifikaci značek. Byly testovány i další vlastnosti navrženého klasifikátoru jako robustnost a časová náročnost.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Intelligent Transportation Systems
ISSN
1524-9050
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
309-321
UT code for WoS article
—
EID of the result in the Scopus database
—