On Bayesian Principal Component Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F07%3A00081099" target="_blank" >RIV/67985556:_____/07:00081099 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Bayesian Principal Component Analysis
Original language description
A complete Bayesian framework for principal component analysis (PCA) is proposed. Previous model-based approaches to PCA were often based upon a factor analysis model with isotropic Gaussian noise. In contrast to PCA, these approaches do not impose orthogonality constraints. A new model with orthogonality restrictions is proposed. Its approximate Bayesian solution using the variational approximation and results from directional statistics is developed. The Bayesian solution provides two notable resultsin relation to PCA. The first is uncertainty bounds on principal components (PCs), and the second is an explicit distribution on the number of relevant PCs. The posterior distribution of the PCs is found to be of the von-Mises?Fisher type.
Czech name
O Bayesovském řešení analýzy hlavních komponent
Czech description
Plně Bayesovský přístup k analýze hlavních komponent je představen. Předchozí modelování hlavních komponent se opíralo o model faktorové analýzy s isotropním Guasovským šumem. Tento model však nezahrnuje podmínku ortogonality, která je součástí hlavníchkomponent. Navrhujeme nový model, který tuto podmínku respektuje. Přibližné řešení Bayesovského odhadování pro tento model bylo vyvinuto. Toto řešení má dva zajímavé výsledky. Za prvé, hranice neurčitosti pro odhady hlavních komponent, za druhé, aposteriorní distribuci počtu obsažených komponent. Aposteriorní distribuce hlavních komponent je ve tvaru von-Mises-Fisherova rozložení.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0572" target="_blank" >1M0572: Data, algorithms, decision making</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
23
Pages from-to
4101-4123
UT code for WoS article
—
EID of the result in the Scopus database
—