Extraction of Binary Features by Probabilistic Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00311211" target="_blank" >RIV/67985556:_____/08:00311211 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31160/08:00031161
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Extraction of Binary Features by Probabilistic Neural Networks
Original language description
In order to design probabilistic neural networks in the framework of pattern recognition we estimate class-conditional probability distributions in the form of finite mixtures of product components. As the mixture components correspond to neurons we specify the properties of neurons in terms of component parameters. The probabilistic features defined by neuron outputs can be used to transform the classification problem without information loss and, simultaneously, the Shannon entropy of the feature space is minimized. We show that, instead of dimensionality reduction, the decision problem can be simplified by using binary approximation of the probabilistic features. In experiments the resulting binary features improve recognition accuracy but also theyare nearly independent - in accordance with the minimum entropy property.
Czech name
Extrakce binárních příznaků pomocí pravděpodobnostních neuronových sítí
Czech description
Extrakce binárních příznaků pomocí pravděpodobnostních neuronových sítí
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks - ICANN 2008
ISBN
978-3-540-87558-1
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Prague
Event date
Sep 3, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000259567200006