All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extraction of Binary Features by Probabilistic Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00311211" target="_blank" >RIV/67985556:_____/08:00311211 - isvavai.cz</a>

  • Alternative codes found

    RIV/61384399:31160/08:00031161

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extraction of Binary Features by Probabilistic Neural Networks

  • Original language description

    In order to design probabilistic neural networks in the framework of pattern recognition we estimate class-conditional probability distributions in the form of finite mixtures of product components. As the mixture components correspond to neurons we specify the properties of neurons in terms of component parameters. The probabilistic features defined by neuron outputs can be used to transform the classification problem without information loss and, simultaneously, the Shannon entropy of the feature space is minimized. We show that, instead of dimensionality reduction, the decision problem can be simplified by using binary approximation of the probabilistic features. In experiments the resulting binary features improve recognition accuracy but also theyare nearly independent - in accordance with the minimum entropy property.

  • Czech name

    Extrakce binárních příznaků pomocí pravděpodobnostních neuronových sítí

  • Czech description

    Extrakce binárních příznaků pomocí pravděpodobnostních neuronových sítí

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks - ICANN 2008

  • ISBN

    978-3-540-87558-1

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Prague

  • Event date

    Sep 3, 2008

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000259567200006