A reconstruction algorithm for the essential graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F09%3A00322545" target="_blank" >RIV/67985556:_____/09:00322545 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ijar.2008.09.001" target="_blank" >http://dx.doi.org/10.1016/j.ijar.2008.09.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2008.09.001" target="_blank" >10.1016/j.ijar.2008.09.001</a>
Alternative languages
Result language
angličtina
Original language name
A reconstruction algorithm for the essential graph
Original language description
A standard graphical representative of a Bayesian network structure is a special chain graphs, known as an essential graph. An alternative algebraic approach to the mathematical description of this statistical model uses instead a certain integer-valuedvector, known as a standard imset. We give a direct formula for the translation of any chain graph describing a Bayesian network structure into the standard imset. Moreover, we present a two-stage algorithm which makes it possible to reconstruct the essential graph on the basis of the standard imset. The core of the paper is the proof of correctness of the algorithm.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
385-413
UT code for WoS article
000264359500016
EID of the result in the Scopus database
—