Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F09%3A00323859" target="_blank" >RIV/67985556:_____/09:00323859 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/09:00206639 RIV/61989100:27240/09:00021414
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction
Original language description
We study the discretized problem of the shape optimization of three-dimensional elastic bodies in unilateral contact. The aim is to extend existing results to the case of contact problems obeying the Coulomb friction law. Mathematical modeling of the Coulomb friction problem leads to an implicit variational inequality. It is shown that for small coefficients of friction the discretized problem with Coulomb friction has a unique solution and that this solution is Lipschitzian as a function of a control variable describing the shape of the elastic body. The two-dimensional case of this problem was studied by the authors in SIAM J. Optim.; there we used the so-called implicit programming approach combined with the generalized differential calculus of Clarke. The extension of this technique to the three-dimensional situation is by no means straightforward. The main source of difficulties is the nonpolyhedral character of the second-order (Lorentz) cone, arising in the 3D model.
Czech name
Optimalizace tvaru třídimenzionálních těles s Coulobmovským kontaktem
Czech description
Studovali jsme diskretizovaný problém tvarové optimalizace třídimenzionálních pružných těles v jednostranném kontaktu. Cílem je rozšířit stávající výsledky v případě problémů Coulombovským kontaktem. Matematické modelování v Coulombovském tření vede k implicitním variačním nerovnostem. Je prokázáno, že pro malé koeficienty tření má problém s Coulombovským třením jednoznačné řešení, a že toto řešení je lipschitzovské jako funkce kontrolní proměnné popisující tvar pružného tělesa. Dvoudimenzionální případtohoto problému byla studován autory v SIAM J. Optim., tam jsme použili takzvané implicitní programování kombinované s generalizovaným diferenciálním počtem Clarkeho. Rozšíření této techniky na třídimenzionálním situace není vůbec jednoduché. Hlavním zdrojem obtíží je nonpolyhedrální charakter Lorentzova kužele, který vznikne v 3D modelu.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Optimization
ISSN
1052-6234
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—