All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F09%3A00323859" target="_blank" >RIV/67985556:_____/09:00323859 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/09:00206639 RIV/61989100:27240/09:00021414

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction

  • Original language description

    We study the discretized problem of the shape optimization of three-dimensional elastic bodies in unilateral contact. The aim is to extend existing results to the case of contact problems obeying the Coulomb friction law. Mathematical modeling of the Coulomb friction problem leads to an implicit variational inequality. It is shown that for small coefficients of friction the discretized problem with Coulomb friction has a unique solution and that this solution is Lipschitzian as a function of a control variable describing the shape of the elastic body. The two-dimensional case of this problem was studied by the authors in SIAM J. Optim.; there we used the so-called implicit programming approach combined with the generalized differential calculus of Clarke. The extension of this technique to the three-dimensional situation is by no means straightforward. The main source of difficulties is the nonpolyhedral character of the second-order (Lorentz) cone, arising in the 3D model.

  • Czech name

    Optimalizace tvaru třídimenzionálních těles s Coulobmovským kontaktem

  • Czech description

    Studovali jsme diskretizovaný problém tvarové optimalizace třídimenzionálních pružných těles v jednostranném kontaktu. Cílem je rozšířit stávající výsledky v případě problémů Coulombovským kontaktem. Matematické modelování v Coulombovském tření vede k implicitním variačním nerovnostem. Je prokázáno, že pro malé koeficienty tření má problém s Coulombovským třením jednoznačné řešení, a že toto řešení je lipschitzovské jako funkce kontrolní proměnné popisující tvar pružného tělesa. Dvoudimenzionální případtohoto problému byla studován autory v SIAM J. Optim., tam jsme použili takzvané implicitní programování kombinované s generalizovaným diferenciálním počtem Clarkeho. Rozšíření této techniky na třídimenzionálním situace není vůbec jednoduché. Hlavním zdrojem obtíží je nonpolyhedrální charakter Lorentzova kužele, který vznikne v 3D modelu.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Optimization

  • ISSN

    1052-6234

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database