A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F10%3A00343961" target="_blank" >RIV/67985556:_____/10:00343961 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints
Original language description
In this paper, we deal with strong stationarity conditions for mathematical programs with equilibrium constraints (MPEC). The main task in deriving these conditions consists in calculating the Fr´echet normal cone to the graph of the solution mapping associated with the underlying generalized equation of the MPEC. We derive an inner approximation to this cone, which is exact under an additional assumption. Even if the latter fails to hold, the inner approximation can be used to check strong stationarityvia the weaker (but easier to calculate) concept of M-stationarity.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100750802" target="_blank" >IAA100750802: Nonsmooth and set-valued analysis in mechanics and thermomechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
12
Pages from-to
—
UT code for WoS article
000280425000008
EID of the result in the Scopus database
—