Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F11%3A00362936" target="_blank" >RIV/67985556:_____/11:00362936 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/03605302.2011.574243" target="_blank" >http://dx.doi.org/10.1080/03605302.2011.574243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03605302.2011.574243" target="_blank" >10.1080/03605302.2011.574243</a>
Alternative languages
Result language
angličtina
Original language name
Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds
Original language description
Existence of a global weak solution of a stochastic wave equation with values in a compact Riemannian manifod driven by a spatially homogeneous Wiener process with finite spectral measure is proved. A recently introduced general method of constructing weak solutions of SPDEs that does not rely on any martingale representation theorem is employed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0237" target="_blank" >GA201/07/0237: Infinite dimensional stochastic systems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Partial Differential Equations
ISSN
0360-5302
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
1624-1653
UT code for WoS article
000299271700005
EID of the result in the Scopus database
—