Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds
Result description
Existence of a global weak solution of a stochastic wave equation with values in a compact Riemannian manifod driven by a spatially homogeneous Wiener process with finite spectral measure is proved. A recently introduced general method of constructing weak solutions of SPDEs that does not rely on any martingale representation theorem is employed.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds
Original language description
Existence of a global weak solution of a stochastic wave equation with values in a compact Riemannian manifod driven by a spatially homogeneous Wiener process with finite spectral measure is proved. A recently introduced general method of constructing weak solutions of SPDEs that does not rely on any martingale representation theorem is employed.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Partial Differential Equations
ISSN
0360-5302
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
1624-1653
UT code for WoS article
000299271700005
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2011