Weak Solutions for the Compressible Navier-Stokes Equations: Existence, Stability, and Longtime Behavior
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00502440" target="_blank" >RIV/67985840:_____/18:00502440 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-13344-7_76" target="_blank" >http://dx.doi.org/10.1007/978-3-319-13344-7_76</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-13344-7_76" target="_blank" >10.1007/978-3-319-13344-7_76</a>
Alternative languages
Result language
angličtina
Original language name
Weak Solutions for the Compressible Navier-Stokes Equations: Existence, Stability, and Longtime Behavior
Original language description
This double-sized chapter contains two related themes that were supposed to be covered by two independent chapters of the handbook in the original project: (1) weak solutions of the Navier-Stokes equations in the barotropic regime and (2) weak solutions of the Navier-Stokes-Fourier system. We shall discuss for both systems: (1)Various notions of weak solutions, their relevance, and their mutual relations. (2)Global existence of weak solutions. (3)Notions of relative energy functional, dissipative solutions and relative energy inequality and its impact on the investigation of the stability analysis of compressible flows. (4)Weak strong uniqueness principle. (5)Longtime behavior of weak solutions. For physical reasons, we shall limit ourselves to the three-dimensional physical space.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
ISBN
978-3-319-13343-0
Number of pages of the result
166
Pages from-to
1381-1546
Number of pages of the book
3045
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—