Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier?Stokes system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00382804" target="_blank" >RIV/67985840:_____/12:00382804 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00021-011-0091-9" target="_blank" >http://dx.doi.org/10.1007/s00021-011-0091-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-011-0091-9" target="_blank" >10.1007/s00021-011-0091-9</a>
Alternative languages
Result language
angličtina
Original language name
Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier?Stokes system
Original language description
We introduce the notion of relative entropy for the weak solutions to the compressible Navier?Stokes system. In particular, we show that any finite energy weak solution satisfies a relative entropy inequality with respect to any couple of smooth functions satisfying relevant boundary conditions. As a corollary, we establish the weak-strong uniqueness property in the class of finite energy weak solutions, extending thus the classical result of Prodi and Serrin to the class of compressible fluid flows.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
717-730
UT code for WoS article
000310641700006
EID of the result in the Scopus database
—