On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F11%3A00364167" target="_blank" >RIV/67985556:_____/11:00364167 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/100807168" target="_blank" >http://dx.doi.org/10.1137/100807168</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/100807168" target="_blank" >10.1137/100807168</a>
Alternative languages
Result language
angličtina
Original language name
On the Aubin Property of Critical Points to Perturbed Second-Order Cone Programs
Original language description
We characterize the Aubin property of a canonically perturbed KKT system related to the second-order cone programming problem in terms of a strong second order optimality condition. This condition requires the positive definiteness of a quadratic form, involving the Hessian of the Lagrangian and an extra term, associated with the curvature of the constraint set, over the linear space generated by the cone of critical directions. Since this condition is equivalent with the Robinson strong regularity, thementioned KKT system behaves (with some restrictions) similarly as in nonlinear programming.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100750802" target="_blank" >IAA100750802: Nonsmooth and set-valued analysis in mechanics and thermomechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Optimization
ISSN
1052-6234
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
798-823
UT code for WoS article
000295405600008
EID of the result in the Scopus database
—