Exponential return times in a zero-entropy process
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00381669" target="_blank" >RIV/67985556:_____/12:00381669 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/cpaa.2012.11.1361" target="_blank" >http://dx.doi.org/10.3934/cpaa.2012.11.1361</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/cpaa.2012.11.1361" target="_blank" >10.3934/cpaa.2012.11.1361</a>
Alternative languages
Result language
angličtina
Original language name
Exponential return times in a zero-entropy process
Original language description
We construct a zero-entropy weakly mixing finite-valued process with the exponential limit law for return resp. hitting times. This limit law is obtained in almost every point, taking the limit along the full sequence of cylinders around the point. Tillnow, the exponential limit law for return resp. hitting times, taking the limit along the full sequence of cylinders, have been obtained only in positive-entropy processes satisfying some strong mixing conditions of Rosenblatt type.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB100750901" target="_blank" >KJB100750901: Typical return times in dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications on Pure and Applied Analysis
ISSN
1534-0392
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
1361-1383
UT code for WoS article
000305804600028
EID of the result in the Scopus database
—