Return times in a process generated by a typical partition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F09%3A00330009" target="_blank" >RIV/67985556:_____/09:00330009 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Return times in a process generated by a typical partition
Original language description
In Downarowicz and Lacroix (2006 Law of series) and Downarowicz et al (2007 ESAIM P&S), the authors show that for every ergodic aperiodic dynamical system, the process generated by a typical partition has the following property: the zero function is a pointwise limit, along a subsequence of lengths nk of upper density 1 and with probabilities increasing to 1, of the distribution functions of the normalized (i.e. appropriately scaled) hitting times to cylinder sets of lengths nk. Of course, this is the smallest possible limit distribution. We indicate two classes of systems where at least one more limit distribution coexists, and occurs with the same 'strength' (i.e. for every typical process, along a subsequence of lengths of upper density 1 and with probabilities increasing to 1): in ?-mixing systems this is the exponential limit distribution.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB100750901" target="_blank" >KJB100750901: Typical return times in dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
—
UT code for WoS article
000262584500007
EID of the result in the Scopus database
—