All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sparsity in Bayesian Blind Source Separation and Deconvolution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00396464" target="_blank" >RIV/67985556:_____/13:00396464 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-40991-2_35" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40991-2_35</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-40991-2_35" target="_blank" >10.1007/978-3-642-40991-2_35</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sparsity in Bayesian Blind Source Separation and Deconvolution

  • Original language description

    Blind source separation algorithms are based on various separation criteria. Differences in convolution kernels of the sources are common assumptions in audio and image processing. Since it is still an ill posed problem, any additional information is beneficial. In this contribution, we investigate the use of sparsity criteria for both the source signal and the convolution kernels. A probabilistic model of the problem is introduced and its Variational Bayesian solution derived. The sparsity of the solution is achieved by introduction of unknown variance of the prior on all elements of the convolution kernels and the mixing matrix. Properties of the model are analyzed on simulated data and compared with state of the art methods. Performance of the algorithm is demonstrated on the problem of decomposition of a sequence of medical data. Specifically, the assumption of sparseness is shown to suppress artifacts of unconstrained separation method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-29225S" target="_blank" >GA13-29225S: Image Blind Deconvolution in Demanding Conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Knowledge Discovery in Databases

  • ISBN

    978-3-642-40990-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    548-563

  • Publisher name

    Springer

  • Place of publication

    Berlin Heidelberg

  • Event location

    Praha

  • Event date

    Sep 24, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article