Belief functions on MV-algebras of fuzzy sets: an overview
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00399109" target="_blank" >RIV/67985556:_____/13:00399109 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-03155-2_7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-03155-2_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-03155-2_7" target="_blank" >10.1007/978-3-319-03155-2_7</a>
Alternative languages
Result language
angličtina
Original language name
Belief functions on MV-algebras of fuzzy sets: an overview
Original language description
Belief functions are the measure theoretical objects Dempster-Shafer evidence theory is based on. They are in fact totally monotone capacities, and can be regarded as a special class of measures of uncertainty used to model an agent’s degrees of belief in the occurrence of a set of events by taking into account different bodies of evidence that support those beliefs. In this chapter we present two main approaches to extending belief func- tions on Boolean algebras of events to MV-algebras of events, modelled as fuzzy sets, and we discuss several properties of these generalized mea- sures. In particular we deal with the normalization and soft-normalization problems, and on a generalization of Dempster’s rule of combination.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-20012S" target="_blank" >GA13-20012S: Conditional independence structures: algebraic and geometric methods</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Non-Additive Measures: Theory and Applications
ISBN
978-3-319-03154-5
Number of pages of the result
28
Pages from-to
173-200
Number of pages of the book
200
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
000332666300008