All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Probabilistic Inference in BN2T Models by Weighted Model Counting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00399130" target="_blank" >RIV/67985556:_____/13:00399130 - isvavai.cz</a>

  • Alternative codes found

    RIV/61384399:31160/13:00043526

  • Result on the web

    <a href="http://dx.doi.org/10.3233/978-1-61499-330-8-275" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-330-8-275</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/978-1-61499-330-8-275" target="_blank" >10.3233/978-1-61499-330-8-275</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Probabilistic Inference in BN2T Models by Weighted Model Counting

  • Original language description

    Exact inference in Bayesian networks with nodes having a large parent set is not tractable using standard techniques as are the junction tree method or the variable elimination. However, in many applications, the conditional probability tbles of these nodes have certain local structure than can be exploited to make the exact inference tractable. In this paper we combine the CP tensor decomposition of probability tables with probabilistic inference using weighted model counting. The motivation for this combination is to exploit not only the local structure of some conditional probability tables but also other structural information potentialy present in the Baysian network, like determinism or context specific independence. We illustrate the proposed combination on BN2T networks -- two-layered Bayesian networks with conditional probability tables representing noisy threshold models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Twelfth Scandinavian Conference on Artificial Intelligence

  • ISBN

    978-1-61499-329-2

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    275-284

  • Publisher name

    IOS Press

  • Place of publication

    Amsterdam

  • Event location

    Aalborg

  • Event date

    Nov 20, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article