Sum-Product-Set Networks: Deep Tractable Models for Tree-Structured Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00374040" target="_blank" >RIV/68407700:21230/24:00374040 - isvavai.cz</a>
Result on the web
<a href="https://openreview.net/forum?id=mF3cTns4pe" target="_blank" >https://openreview.net/forum?id=mF3cTns4pe</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Sum-Product-Set Networks: Deep Tractable Models for Tree-Structured Graphs
Original language description
Daily internet communication relies heavily on tree-structured graphs, embodied by popular data formats such as XML and JSON. However, many recent generative (probabilistic) models utilize neural networks to learn a probability distribution over undirected cyclic graphs. This assumption of a generic graph structure brings various computational challenges, and, more importantly, the presence of non-linearities in neural networks does not permit tractable probabilistic inference. We address these problems by proposing sum-product-set networks, an extension of probabilistic circuits from unstructured tensor data to tree-structured graph data. To this end, we use random finite sets to reflect a variable number of nodes and edges in the graph and to allow for exact and efficient inference. We demonstrate that our tractable model performs comparably to various intractable models based on neural networks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-32620S" target="_blank" >GA22-32620S: Unsupervised learning from heterogenous structured data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceeding The Twelfth International Conference on Learning Representations (ICLR 2024)
ISBN
9781713898658
ISSN
—
e-ISSN
—
Number of pages
30
Pages from-to
—
Publisher name
International Conference on Learning Representations
Place of publication
—
Event location
Vídeň
Event date
May 7, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—