The Quantum Entropy Cone of Stabiliser States
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00399530" target="_blank" >RIV/67985556:_____/13:00399530 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.TQC.2013.270" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.TQC.2013.270</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.TQC.2013.270" target="_blank" >10.4230/LIPIcs.TQC.2013.270</a>
Alternative languages
Result language
angličtina
Original language name
The Quantum Entropy Cone of Stabiliser States
Original language description
We investigate the universal linear inequalities that hold for the von Neumann entropies in a multi-party system, prepared in a stabiliser state. We demonstrate here that entropy vectors for stabiliser states satisfy, in addition to the classic inequalities, a type of linear rank inequalities associated with the combinatorial structure of normal subgroups of certain matrix groups. In the 4-party case, there is only one such inequality, the so-called Ingleton inequality. For these systems we show that strong subadditivity, weak monotonicity and Ingleton inequality exactly characterize the entropy cone for stabiliser states.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-20012S" target="_blank" >GA13-20012S: Conditional independence structures: algebraic and geometric methods</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)
ISBN
978-3-939897-55-2
ISSN
1868-8969
e-ISSN
—
Number of pages
15
Pages from-to
270-284
Publisher name
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Guelph
Event date
Jan 1, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—