Noise Resistant Image Retrieval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00431524" target="_blank" >RIV/67985556:_____/14:00431524 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ICPR.2014.513" target="_blank" >http://dx.doi.org/10.1109/ICPR.2014.513</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICPR.2014.513" target="_blank" >10.1109/ICPR.2014.513</a>
Alternative languages
Result language
angličtina
Original language name
Noise Resistant Image Retrieval
Original language description
We present a content-based image retrieval method which is particularly designed for noisy images. The images are retrieved according to histogram similarity. To reach high robustness to noise, the histograms are described by novel features which are insensitive to convolution with a Gaussian kernel, i.e. insensitive to a Gaussian additive noise in original images. The advantage of the new method is demonstrated experimentally on real data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20206 - Computer hardware and architecture
Result continuities
Project
<a href="/en/project/GA13-29225S" target="_blank" >GA13-29225S: Image Blind Deconvolution in Demanding Conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 22nd International Conference on Pattern Recognition (ICPR 2014)
ISBN
978-1-4799-5208-3
ISSN
1051-4651
e-ISSN
—
Number of pages
6
Pages from-to
2972-2977
Publisher name
IEEE Computer Society
Place of publication
Stockholm
Event location
Stockholm
Event date
Aug 22, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000359818003017