All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Multivariate Density Estimation under Gaussian Noise

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00524621" target="_blank" >RIV/67985556:_____/20:00524621 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s11045-020-00702-7" target="_blank" >https://link.springer.com/article/10.1007/s11045-020-00702-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11045-020-00702-7" target="_blank" >10.1007/s11045-020-00702-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Multivariate Density Estimation under Gaussian Noise

  • Original language description

    Observation of random variables is often corrupted by additive Gaussian noise. Noisereducing data processing is time-consuming and may introduce unwanted artifacts. In thisnpaper, a novel approach to description of random variables insensitive with respect to Gaussian noise is presented. The proposed quantities represent the probability density function of the variable to be observed, while noise estimation, deconvolution or denoising are avoided. Projection operators are constructed, that divide the probability density function into a non-Gaussian and a Gaussian part. The Gaussian part is subsequently removed by modifying the characteristic function to ensure the invariance. The descriptors are based on the moments of the probability density function of the noisy random variable. The invariance property and the performance of the proposed method are demonstrated on real image data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/GA18-07247S" target="_blank" >GA18-07247S: Methods and Algorithms for Vector and Tensor Field Image Analysis</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Multidimensional Systems and Signal Processing

  • ISSN

    1573-0824

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    30

  • Pages from-to

    1113-1143

  • UT code for WoS article

    000510098800001

  • EID of the result in the Scopus database

    2-s2.0-85078770837