Lazy Fully Probabilistic Design of Decision Strategies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00434674" target="_blank" >RIV/67985556:_____/14:00434674 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-12436-0_16" target="_blank" >http://dx.doi.org/10.1007/978-3-319-12436-0_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-12436-0_16" target="_blank" >10.1007/978-3-319-12436-0_16</a>
Alternative languages
Result language
angličtina
Original language name
Lazy Fully Probabilistic Design of Decision Strategies
Original language description
Fully probabilistic design of decision strategies (FPD) extends Bayesian dynamic decision making. The FPD species the decision aim via so-called ideal - a probability density, which assigns high probability values to the desirable behaviours and low values to undesirable ones. The optimal decision strategy minimises the Kullback-Leibler divergence of the probability density describing the closed-loop behaviour to this ideal. In spite of the availability of explicit minimisers in the corresponding dynamic programming, it suers from the curse of dimensionality connected with complexity of the value function. Recently proposed a lazy FPD tailors lazy learning, which builds a local model around the current behaviour, to estimation of the closed-loop modelwith the optimal strategy. This paper adds a theoretical support to the lazy FPD and outlines its further improvement.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-13502S" target="_blank" >GA13-13502S: Fully Probabilistic Design of Dynamic Decision Strategies for Imperfect Participants in Market Scenarios</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Neural Networks ? ISNN 2014
ISBN
978-3-319-12435-3
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
140-149
Publisher name
Springer
Place of publication
Cham
Event location
Hong Kong and Macao
Event date
Nov 28, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—