On the Tsallis Entropy for Gibbs Random Fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00441885" target="_blank" >RIV/67985556:_____/14:00441885 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Tsallis Entropy for Gibbs Random Fields
Original language description
The Tsallis entropy, as a generalization of the standard Shannon-type entropy, was introduced by Constantino Tsallis (1988). Since that the concept has been extensively studied (see, e.g., Tsallis (2009)). In the present paper we address the problem of generalizing the concept for innite- dimensional systems, i.e., the random processes and elds. Apparently, rather well suited models are the Gibbs distributions (cf. e.g., Georgii (1988)). We construct the appropriate Tsallis entropy rate either asymptotically by limit over a sequence of expanding volumes or by analogy with the exponential nite-dimensional distributions. Basic properties, taking into account the possible phase transitions, are also introduced.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamic Models in Economics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Czech Econometric Society
ISSN
1212-074X
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
33
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
11
Pages from-to
59-69
UT code for WoS article
—
EID of the result in the Scopus database
—