Sequential Estimation of Mixtures in Diffusion Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00431479" target="_blank" >RIV/67985556:_____/15:00431479 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/LSP.2014.2353652" target="_blank" >http://dx.doi.org/10.1109/LSP.2014.2353652</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LSP.2014.2353652" target="_blank" >10.1109/LSP.2014.2353652</a>
Alternative languages
Result language
angličtina
Original language name
Sequential Estimation of Mixtures in Diffusion Networks
Original language description
The letter studies the problem of sequential estimation of mixtures in diffusion networks whose nodes communicate only with their adjacent neighbors. The adopted quasi-Bayesian approach yields a probabilistically consistent and computationally non-intensive and fast method, applicable to a wide class of mixture models with unknown component parameters and weights. Moreover, if conjugate priors are used for inferring the component parameters, the solution attains a closed analytic form.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-06678P" target="_blank" >GP14-06678P: Distributed dynamic estimation in diffusion networks</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Signal Processing Letters
ISSN
1070-9908
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
197-201
UT code for WoS article
000342159700009
EID of the result in the Scopus database
2-s2.0-84907191888