All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Variational Blind Source Separation Toolbox and its Application to Hyperspectral Image Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00447094" target="_blank" >RIV/67985556:_____/15:00447094 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/EUSIPCO.2015.7362599" target="_blank" >http://dx.doi.org/10.1109/EUSIPCO.2015.7362599</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/EUSIPCO.2015.7362599" target="_blank" >10.1109/EUSIPCO.2015.7362599</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Variational Blind Source Separation Toolbox and its Application to Hyperspectral Image Data

  • Original language description

    The task of blind source separation (BSS) is to decompose sources that are observed only via their linear combination with unknown weights. The separation is possible when additional assumptions on the initial sources are given. Different assumptions yield different separation algorithms. Since we are primarily concerned with noisy observations, we follow the Variational Bayes approach and define noise properties and assumptions on the sources by prior probability distributions. Due to properties of theVariational Bayes algorithm, the resulting inference algorithm is very similar for many different source assumptions. This allows us to build a modular toolbox, where it is easy to code different assumptions as different modules. By using different modules, we obtain different BSS algorithms. The potential of this open-source toolbox is demonstrated on separation of hyperspectral image data. The MATLAB implementation of the toolbox is available for download.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-29225S" target="_blank" >GA13-29225S: Image Blind Deconvolution in Demanding Conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 23rd European Signal Processing Conference (EUSIPCO 2015)

  • ISBN

    978-0-9928626-4-0

  • ISSN

    2076-1465

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1336-1340

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Piscataway

  • Event location

    Nice

  • Event date

    Aug 31, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article