All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimation of Input Function from Dynamic PET Brain Data Using Bayesian Blind Source Separation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00450509" target="_blank" >RIV/67985556:_____/15:00450509 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.2298/CSIS141201051T" target="_blank" >http://dx.doi.org/10.2298/CSIS141201051T</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2298/CSIS141201051T" target="_blank" >10.2298/CSIS141201051T</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimation of Input Function from Dynamic PET Brain Data Using Bayesian Blind Source Separation

  • Original language description

    Selection of regions of interest in an image sequence is a typical prerequisite step for estimation of time-activity curves in dynamic positron emission tomography (PET). This procedure is done manually by a human operator and therefore suffers from subjective errors. Another such problem is to estimate the input function. It can be measured from arterial blood or it can be searched for a vascular structure on the images which is hard to be done, unreliable, and often impossible. In this study, we focuson blind source separation methods with no needs of manual interaction. Recently, we developed sparse blind source separation and deconvolution (S-BSS-vecDC) method for separation of original sources from dynamic medical data based on probability modeling and Variational Bayes approximation methodology. In this paper, we extend this method and we apply the methods on dynamic brain PET data and application and comparison of derived algorithms with those of similar assumptions are given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-29225S" target="_blank" >GA13-29225S: Image Blind Deconvolution in Demanding Conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computer Science and Information Systems

  • ISSN

    1820-0214

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    RS - THE REPUBLIC OF SERBIA

  • Number of pages

    15

  • Pages from-to

    1273-1287

  • UT code for WoS article

    000366127000008

  • EID of the result in the Scopus database

    2-s2.0-84947214904