Ergodicity for a Stochastic Geodesic Equation in the Tangent Bundle of the 2D Sphere
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00451399" target="_blank" >RIV/67985556:_____/15:00451399 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10587-015-0200-7" target="_blank" >http://dx.doi.org/10.1007/s10587-015-0200-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-015-0200-7" target="_blank" >10.1007/s10587-015-0200-7</a>
Alternative languages
Result language
angličtina
Original language name
Ergodicity for a Stochastic Geodesic Equation in the Tangent Bundle of the 2D Sphere
Original language description
Ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere are studied while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Existence and non-uniqueness of invariant probability measures for the original problem are proved and results on attractivity towards an invariant measure are obtained. A structure-preserving numerical scheme to approximate solutions are presented and computational experiments to motivate and illustrate the theoretical results are provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F0752" target="_blank" >GAP201/10/0752: Stochastic Space-Time Systems</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
41
Pages from-to
617-657
UT code for WoS article
000362883100004
EID of the result in the Scopus database
2-s2.0-84944062359