All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00457879" target="_blank" >RIV/67985556:_____/16:00457879 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jde.2015.11.018" target="_blank" >http://dx.doi.org/10.1016/j.jde.2015.11.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2015.11.018" target="_blank" >10.1016/j.jde.2015.11.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold

  • Original language description

    Classical solutions to PDEs with discrete state-dependent delay are studied. We prove the well-posedness in a set XF which is analogous to the solution manifold used for ordinary differential equations with statedependent delay. We prove that the evolution operators are C1-smooth on the solution manifold.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP103%2F12%2F2431" target="_blank" >GAP103/12/2431: Systems described by partial differential equations with delays</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    260

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    4454-4472

  • UT code for WoS article

    000369464500019

  • EID of the result in the Scopus database

    2-s2.0-84979787288