Strong solutions to stochastic wave equations with values in Riemannian manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00089684" target="_blank" >RIV/67985840:_____/07:00089684 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Strong solutions to stochastic wave equations with values in Riemannian manifolds
Original language description
We prove existence and uniqueness of a global solution of a stochastic wave equation in an arbitrary Riemannian manifold. The solution is defined on the 1+1 dimensional Minkowski space, and the driving noise is a spatially homogeneous Wiener process.
Czech name
Silná řešení stochastických vlnových rovnic s hodnotami v Riemannových varietách
Czech description
Silná řešení stochastických vlnových rovnic s hodnotami v Riemannových varietách
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F04%2F0750" target="_blank" >GA201/04/0750: Stochastic equations in infinite dimensional spaces</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
253
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
449-481
UT code for WoS article
—
EID of the result in the Scopus database
—