Superadditive and subadditive transformations of integrals and aggregation functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00458803" target="_blank" >RIV/67985556:_____/16:00458803 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2015.08.006" target="_blank" >http://dx.doi.org/10.1016/j.fss.2015.08.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2015.08.006" target="_blank" >10.1016/j.fss.2015.08.006</a>
Alternative languages
Result language
angličtina
Original language name
Superadditive and subadditive transformations of integrals and aggregation functions
Original language description
We propose the concepts of superadditive and of subadditive transformations of aggregation functions acting on non-negative reals, in particular of integrals with respect to monotone measures. We discuss special properties of the proposed transforms and links between some distinguished integrals. Superadditive transformation of the Choquet integral, as well as of the Shilkret integral, is shown to coincide with the corresponding concave integral recently introduced by Lehrer. Similarly the transformation of the Sugeno integral is studied. Moreover, subadditive transformation of distinguished integrals is also discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
291
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
40-53
UT code for WoS article
000371144500005
EID of the result in the Scopus database
2-s2.0-84959144041