Relationship between two types of superdecomposition integrals on finite spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00533381" target="_blank" >RIV/67985556:_____/20:00533381 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011419304245" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011419304245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2019.08.015" target="_blank" >10.1016/j.fss.2019.08.015</a>
Alternative languages
Result language
angličtina
Original language name
Relationship between two types of superdecomposition integrals on finite spaces
Original language description
This paper investigates the relationship between two types of superdecomposition integrals, namely, the convex integral and the pan-integral from above, on finite spaces. To this end, we introduce two new concepts related to monotone measures - superadditivity with respect to singletons and minimal strictly subadditive set - and discuss some of their properties. In the case that the monotone measure μ is superadditive with respect to singletons, we show that these two types of integrals are equivalent. In other cases, by means of the characteristics of minimal strictly subadditive sets we provide a set of necessary and sufficient conditions for which these two types of integrals coincide with each other.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
396
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
1-16
UT code for WoS article
000558640800001
EID of the result in the Scopus database
2-s2.0-85072219787