Invariant measures of mass migration processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00464455" target="_blank" >RIV/67985556:_____/16:00464455 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1214/16-EJP4399" target="_blank" >http://dx.doi.org/10.1214/16-EJP4399</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/16-EJP4399" target="_blank" >10.1214/16-EJP4399</a>
Alternative languages
Result language
angličtina
Original language name
Invariant measures of mass migration processes
Original language description
We introduce the “mass migration process (MMP), a conservative particle system on NZdNZd. It consists in jumps of kk particles (k1k1) between sites, with a jump rate depending only on the state of the system at the departure and arrival sites of the jump. It generalizes misanthropes processes, hence zero range and target processes. After the construction of MMP, our main focus is on its invariant measures. We derive necessary and sufficient conditions for the existence of translation invariant and invariant product probability measures. In the particular cases of asymmetric mass migration zero range and mass migration target dynamics, these conditions yield explicit solutions. If these processes are moreover attractive, we obtain a full characterization of all translation invariant, invariant probability measures. We also consider attractiveness properties (through couplings), condensation phenomena, and their links for MMP. We illustrate our results on many examples; we prove the coexistence of condensation and attractiveness in one of them.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Probability
ISSN
1083-6489
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
52
Pages from-to
1-52
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84997190838