All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical CP Decomposition of Some Difficult Tensors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00468385" target="_blank" >RIV/67985556:_____/17:00468385 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.cam.2016.12.007" target="_blank" >http://dx.doi.org/10.1016/j.cam.2016.12.007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2016.12.007" target="_blank" >10.1016/j.cam.2016.12.007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical CP Decomposition of Some Difficult Tensors

  • Original language description

    In this paper, a numerical method is proposed for canonical polyadic (CP) decomposition of small size tensors. The focus is primarily on decomposition of tensors that correspond to small matrix multiplications. Here, rank of the tensors is equal to the smallest number of scalar multiplications that are necessary to accomplish the matrix multiplication. The proposed method is based on a constrained Levenberg-Marquardt optimization. Numerical results indicate the rank and border ranks of tensors that correspond to multiplication of matrices of the size 2x3 and 3x2, 3x3 and 3x2,n3x3 and 3x3, and 3x4 and 4x3. The ranks are 11, 15, 23 and 29, respectively. In particular, a novel algorithm for computing product of matrices of the sizes 3x4 and 4x3 using 29 multiplications is presented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-13713S" target="_blank" >GA14-13713S: Tensor Decomposition Methods and Their Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational and Applied Mathematics

  • ISSN

    0377-0427

  • e-ISSN

  • Volume of the periodical

    317

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    362-370

  • UT code for WoS article

    000394628800024

  • EID of the result in the Scopus database

    2-s2.0-85007372598