All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adaptive multiple importance sampling for Gaussian processes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00469804" target="_blank" >RIV/67985556:_____/17:00469804 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/00949655.2017.1280037" target="_blank" >http://dx.doi.org/10.1080/00949655.2017.1280037</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/00949655.2017.1280037" target="_blank" >10.1080/00949655.2017.1280037</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adaptive multiple importance sampling for Gaussian processes

  • Original language description

    In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/7F14287" target="_blank" >7F14287: Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Statistical Computation and Simulation

  • ISSN

    0094-9655

  • e-ISSN

  • Volume of the periodical

    87

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    1644-1665

  • UT code for WoS article

    000399503500009

  • EID of the result in the Scopus database

    2-s2.0-85010689209