All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Linear Inverse Problem with Range Prior on Correlations and Its Variational Bayes Inference

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00474383" target="_blank" >RIV/67985556:_____/17:00474383 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-54084-9_9" target="_blank" >http://dx.doi.org/10.1007/978-3-319-54084-9_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-54084-9_9" target="_blank" >10.1007/978-3-319-54084-9_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Linear Inverse Problem with Range Prior on Correlations and Its Variational Bayes Inference

  • Original language description

    The choice of regularization for an ill-conditioned linear inverse problem has significant impact on the resulting estimates. We consider a linear inverse model with on the solution in the form of zero mean Gaussian prior and with covariance matrix represented in modified Cholesky form. Elements of the covariance are considered as hyper-parameters with truncated Gaussian prior. The truncation points are obtained from expert judgment as range on correlations of selected elements of the solution. This model is motivated by estimation of mixture of radionuclides from gamma dose rate measurements under the prior knowledge on range of their ratios. Since we aim at high dimensional problems, we use the Variational Bayes inference procedure to derive approximate inference of the model. The method is illustrated and compared on a simple example and on more realistic 6 hours long release of mixture of 3 radionuclides.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/7F14287" target="_blank" >7F14287: Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI)</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Bayesian Statistics in Action: BAYSM 2016

  • ISBN

    978-3-319-54084-9

  • ISSN

    2194-1009

  • e-ISSN

    2194-1017

  • Number of pages

    11

  • Pages from-to

    91-101

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Florence

  • Event date

    Jun 19, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000418403500009