All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Initialization of Recursive Mixture-based Clustering with Uniform Components

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00476595" target="_blank" >RIV/67985556:_____/17:00476595 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5220/0006417104490458" target="_blank" >http://dx.doi.org/10.5220/0006417104490458</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0006417104490458" target="_blank" >10.5220/0006417104490458</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Initialization of Recursive Mixture-based Clustering with Uniform Components

  • Original language description

    The paper deals with a task of initialization of the recursive mixture estimation for the case of uniform components. This task is significant as a part of mixture-based clustering, where data clusters are described by the uniform distributions. The issue is extensively explored for normal components. However, sometimes the assumption of normality is not suitable or limits potential application areas (e.g., in the case of data with fixed bounds). The use of uniform components can be beneficial for these cases. Initialization is always a critical task of the mixture estimation. Within the considered recursive estimation algorithm the key point of its initialization is a choice of initial statistics of components. The paper explores several initialization approaches and compares results of clustering with a theoretical counterpart. Experiments with real data are demonstrated.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA15-03564S" target="_blank" >GA15-03564S: Clustering and classification using recursive mixture estimation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2017)

  • ISBN

    978-989-758-263-9

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    449-458

  • Publisher name

    SCITEPRESS

  • Place of publication

    Setúbal

  • Event location

    Madrid

  • Event date

    Jul 26, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article