All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Practical Initialization of Recursive Mixture-Based Clustering for Non-negative Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F19%3A00333292" target="_blank" >RIV/68407700:21260/19:00333292 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985556:_____/20:00504124

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-11292-9_34" target="_blank" >http://dx.doi.org/10.1007/978-3-030-11292-9_34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-11292-9_34" target="_blank" >10.1007/978-3-030-11292-9_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Practical Initialization of Recursive Mixture-Based Clustering for Non-negative Data

  • Original language description

    The paper provides a practical guide on initialization of the recursive mixture-based clustering of non-negative data. For modeling the non-negative data, mixtures of uniform, exponential, gamma and other distributions can be used. Initialization is known to be an important task for a start of the mixture estimation algorithm. Within the considered recursive approach, the key point of initialization is a choice of initial statistics of the involved prior distributions. The paper describes several initialization techniques for the mentioned types of components that can be beneficial primarily from a practical point of view.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-03564S" target="_blank" >GA15-03564S: Clustering and classification using recursive mixture estimation</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Informatics in Control, Automation and Robotics. ICINCO 2017. Lecture Notes in Electrical Engineering.

  • ISBN

    978-3-030-11292-9

  • Number of pages of the result

    20

  • Pages from-to

    679-698

  • Number of pages of the book

    812

  • Publisher name

    Springer, Cham

  • Place of publication

  • UT code for WoS chapter