All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of discrete data from traffic accidents

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00476653" target="_blank" >RIV/67985556:_____/17:00476653 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/SCSP.2017.7973843" target="_blank" >http://dx.doi.org/10.1109/SCSP.2017.7973843</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SCSP.2017.7973843" target="_blank" >10.1109/SCSP.2017.7973843</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of discrete data from traffic accidents

  • Original language description

    This paper deals with the data analysis of traffic accidents. Traffic accidents can be caused by different reasons, e.g., by watchfulness of a driver, failure of a vehicle, bad structural arrangements, etc. The aim of this paper is to investigate seriousness of incidents in dependence on different circumstances of an accident. Description of these circumstances leads to the use of a high number of different variables (about 50 variables), which are mostly discrete. The majority of statistical methods dealing with discrete variables use a frequency table. This is not suitable for traffic data because of a huge dimension. In this paper, several methods are proposed for solution to the problem with high-dimensional traffic data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA15-03564S" target="_blank" >GA15-03564S: Clustering and classification using recursive mixture estimation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2017 Smart City Symposium Prague (SCSP)

  • ISBN

    978-1-5386-3826-2

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    7973843

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Prague

  • Event date

    May 25, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000443416600017