Analysis of discrete data from traffic accidents
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00476653" target="_blank" >RIV/67985556:_____/17:00476653 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/SCSP.2017.7973843" target="_blank" >http://dx.doi.org/10.1109/SCSP.2017.7973843</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCSP.2017.7973843" target="_blank" >10.1109/SCSP.2017.7973843</a>
Alternative languages
Result language
angličtina
Original language name
Analysis of discrete data from traffic accidents
Original language description
This paper deals with the data analysis of traffic accidents. Traffic accidents can be caused by different reasons, e.g., by watchfulness of a driver, failure of a vehicle, bad structural arrangements, etc. The aim of this paper is to investigate seriousness of incidents in dependence on different circumstances of an accident. Description of these circumstances leads to the use of a high number of different variables (about 50 variables), which are mostly discrete. The majority of statistical methods dealing with discrete variables use a frequency table. This is not suitable for traffic data because of a huge dimension. In this paper, several methods are proposed for solution to the problem with high-dimensional traffic data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA15-03564S" target="_blank" >GA15-03564S: Clustering and classification using recursive mixture estimation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2017 Smart City Symposium Prague (SCSP)
ISBN
978-1-5386-3826-2
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
7973843
Publisher name
IEEE
Place of publication
Piscataway
Event location
Prague
Event date
May 25, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000443416600017